If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40=-16t^2+90t
We move all terms to the left:
40-(-16t^2+90t)=0
We get rid of parentheses
16t^2-90t+40=0
a = 16; b = -90; c = +40;
Δ = b2-4ac
Δ = -902-4·16·40
Δ = 5540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5540}=\sqrt{4*1385}=\sqrt{4}*\sqrt{1385}=2\sqrt{1385}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1385}}{2*16}=\frac{90-2\sqrt{1385}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1385}}{2*16}=\frac{90+2\sqrt{1385}}{32} $
| 5(2x-1)=3(4x+6) | | -4x-30+10x=-86 | | 3(2x-7)-(5x+2)=5(9-3x)+12 | | c-3c=-12 | | -12=c–3c | | 5u-55=-5 | | 5(u–11)=-5 | | (n+1)÷4=(3n-11/2)÷6 | | 6^(2x+4)=3^3x*2^(x+8) | | 2x-4-5x-7=-8 | | 2x-4-7=-8 | | 12+9x=16+9x | | 8+7x=23-2x | | -3+-w/2=-5 | | 293/4-n=101/4 | | 203/4-n=101/4 | | -4(h+11)=32 | | x/2-11=22 | | 2g+6=6 | | 3x-22=50+9x | | -84=7v-21 | | -84=7(v–3) | | 21+3y-18=-27 | | 3(7+y)–18=-27 | | -4.5+h=-11.7 | | 10-u=24 | | -21-9x=31-5x | | 24=u-10 | | 8x-11=75 | | 3(1+5m)=6(-1-10m)+9 | | -7r–5r=36 | | 8x-68=-x+76 |